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ABSTRACT Wastewater microbial communities are not static and can vary signifi-
cantly across time and space, but this variation and the factors driving the observed
spatiotemporal variation often remain undetermined. We used a shotgun metage-
nomic approach to investigate changes in wastewater microbial communities across
17 locations in a sewer network, with samples collected from each location over a 3-
week period. Fecal material-derived bacteria constituted a relatively small fraction of
the taxa found in the collected samples, highlighting the importance of environmen-
tal sources to the sewage microbiome. The prokaryotic communities were highly vari-
able in composition depending on the location within the sampling network, and this
spatial variation was most strongly associated with location-specific differences in sew-
age pH. However, we also observed substantial temporal variation in the composition of
the prokaryotic communities at individual locations. This temporal variation was asyn-
chronous across sampling locations, emphasizing the importance of independently con-
sidering both spatial and temporal variation when assessing the wastewater microbiome.
The spatiotemporal patterns in viral community composition closely tracked those of the
prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of
the dominant viruses in these systems. Finally, we found that antibiotic resistance gene
profiles also exhibit a high degree of spatiotemporal variability, with most of these genes
unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic
nature of the wastewater microbiome, the challenges associated with studying these sys-
tems, and the utility of metagenomic approaches for building a multifaceted understand-
ing of these microbial communities and their functional attributes.

IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes
derived from both human and environmental sources. Studies of the sewage microbiome
are useful for monitoring public health and the health of our infrastructure, but the sew-
age microbiome can be highly variable in ways that are often unresolved. We sequenced
DNA recovered from wastewater samples collected over a 3-week period at 17 locations
in a single sewer system to determine how these communities vary across time and
space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor,
were not derived from human feces, but human usage patterns did impact how the
amounts and types of bacteria and bacterial genes we found in these systems varied
over time. Likewise, the wastewater communities, including both bacteria and their
viruses, varied depending on location within the sewage network, highlighting the chal-
lenges and opportunities in efforts to monitor and understand the sewage microbiome.
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While often hidden from view and rarely attracting our attention (unless they malfunc-
tion), municipal sewage systems are important microbial ecosystems. Domestic

wastewater harbors large numbers of microorganisms, including bacteria, archaea, protists,
and viruses. The microbial taxa found in these wastewaters can be derived from human
sources (including fecal, skin, and oral microbes deposited into the system) and external
environmental sources (including soil, groundwater, or sediment microbes introduced dur-
ing passage through the system and microbes introduced directly from tap water) (1). In
addition to these more transient inputs, many of the microbes found in wastewater streams
are more permanent residents of sewage systems found in the sewer sediments and bio-
films (1).

Research into the microbiology of sewage systems can provide valuable insights
relevant to a range of basic and applied scientific disciplines, including epidemiology,
microbial ecology, environmental engineering, and human microbiome research. For
example, previous work has demonstrated that studies of microbes found in sewage
can be used to track pathogen prevalence in a population (2), understand pipe corro-
sion (3–5), track the presence and dissemination of antibiotic resistance genes (6–8),
characterize fecal microbiomes across human populations (9), and contribute to an
understanding of the biogeochemical processes occurring in wastewater (10, 11).

Sewer systems harbor dynamic microbial communities; there is no single type of
wastewater microbial community. Rather, like other microbial ecosystems, the micro-
bial communities found in sewage systems can be highly variable across time and
space. This is true regardless of the specific aspect of wastewater microbial commun-
ities studied. The composition of bacterial, archaeal, viral, and microeukaryotic com-
munities in wastewater communities can exhibit pronounced variation at time scales
ranging from hours to months (12–14) with appreciable spatial variation within a given
sewage network (13) or across different geographic regions (9, 15). The same goes for
particular genes or gene categories of interest (including antibiotic resistance genes)
which can also vary with respect to their diversity and abundances depending on the
sampling location and the timing of sample collection (8, 16, 17).

From those studies that have comprehensively assessed spatial and temporal varia-
tion in the wastewater microbiome, we know that a number of factors can influence
the amounts and types of microbes found in wastewater. These factors can include
temperature, position along a wastewater system, the human populations contributing
to a given wastewater system, system materials, or other characteristics (13). This
potential for high spatial and temporal variation underlies much of the promise of
using wastewater for the epidemiological surveillance of human pathogens (2, 18, 19).
To use a recent example, there are many ongoing and published studies focused on
detecting SARS-CoV-2 in wastewater samples to detect changes in the prevalence of
COVID-19 infections over time or across locations (20, 21). This potential for a high
degree of spatial and temporal variation in microbial distributions is not restricted to
specific pathogens but can also be observed when looking more broadly at the taxo-
nomic structure of sewage-associated communities (9, 12, 13) and their genomic attrib-
utes, as evidenced from recent work using shotgun metagenomic approaches to study
wastewater microbial communities (15, 16, 22). Quantifying the spatial and temporal
variation in wastewater microbial communities is critical for understanding the factors
that influence these microbial communities and their functional capabilities, identify-
ing the likely sources of particular microorganisms (or microbial genes) relevant to
public health, monitoring the impacts of changes in the design and operation of sew-
age networks, and understanding the potential for specific biogeochemical processes
to occur in sewage systems, including those associated with nutrient cycling and bio-
corrosion (1). The value of documenting spatial and temporal variation is not restricted
to the study of wastewater microbial communities, but their dynamic nature, their
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direct and indirect associations with human populations served by sewer systems, and
their potential relevance to public health make studies of the “sewer microbiome”
broadly relevant.

Despite the large body of previous work on the microbiology of sewage systems, what
often remains undetermined is how spatial and temporal variation in the structure of mi-
crobial communities and their genomic attributes compares at finer levels of spatiotempo-
ral resolution, i.e., the variation across multiple locations within a single sewage network
over days to weeks. Our study was designed to address this knowledge gap. We collected
188 wastewater samples from 17 locations on the University of Colorado campus, with
each location representing wastewater outflow from a single building, or cluster of build-
ings, within the same sewer network (Fig. 1A). Samples were collected from each of the
locations up to four times per week for 3 weeks. This sampling intensity allowed us to iden-
tify spatial patterns across a sewage network, assess the degree to which the wastewater
communities exhibit shared temporal dynamics across the network, and determine

FIG 1 (A) Map of the 17 locations across the University of Colorado campus from which sewage samples were collected for this study with each sampling
location labeled following t naming convention used previously (50). (B) Summary presentation of the identified clusters of community types across the 17
sampling locations based on the overall degree of dissimilarity in community composition, with results shown using a hierarchical clustering diagram
(Ward method), as calculated from average Bray-Curtis dissimilarity scores per location. (C) Average relative abundances (proportions) of the dominant
bacterial families across each of the 17 locations. (D) Variation in the three measured variables significantly associated with spatial differences in
community composition, across each location and across the five identified clusters. Note that panels B to C do not highlight the temporal variation
observed within individual locations since these are just based on average dissimilarities in community composition (panel B) and mean relative
abundances within a given sampling location (panel C).
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whether these spatiotemporal patterns are predictably related to differences in building
occupancy, wastewater chemistry, sewer construction, and weather events. Each sample
was analyzed using a shotgun metagenomic approach, with the resulting data used to
explore spatiotemporal patterns in bacterial and archaeal community composition and
their functional genes, with a focus on antibiotic resistance genes given their relevance to
public health (23, 24). We also used these data to assess spatiotemporal patterns in viral
(phage) communities as they have potentially important, but understudied, contributions
to the biology of these systems (15), testing the hypothesis that changes in viral commun-
ities would mirror the associated changes in host microbial communities, as has been
observed in other systems (25–27). As one of the more comprehensive studies of the
wastewater microbiome within a single system, this work highlights the utility of under-
standing spatiotemporal dynamics in these microbial communities.

RESULTS AND DISCUSSION
General description of the prokaryotic communities. Across the entire data set,

we identified 1,087 unique prokaryotic taxa using phyloFlash (28). Since eukaryotic taxa
represented ,0.3% of extracted rRNA gene reads, we focus on the prokaryotic commun-
ities here. On average, we identified 357 unique prokaryotic taxa per sample (range, 182 to
530), but nearly all of these were bacterial. We extracted rRNA genes from seven archaeal
taxa (all members of the Methanobacteriales, Methanomicrobiales, and Methanosarcinales
groups), and these archaeal taxa represented only 0.02% of the rRNA gene reads (range, 0
to 0.4% per sample). The bacterial communities were dominated by members of the fol-
lowing phyla: Proteobacteria, Firmicutes, Bacteroidota, and Campylobacterota. At the family
level of resolution, the most abundant bacterial families are highlighted in Fig. 1C. We note
that the overall taxonomic composition of the microbial communities is similar to that
observed in other wastewater surveys (1), but the composition of the communities varied
appreciably across the sample set. For example, the top three most abundant families
across the data set Comamonadaceae, Enterobacteriaceae, and Aeromonadaceae ranged in
relative abundances from 5 to 51%, 0.3 to 39%, and 0.07 to 35% per sample, respectively.
This high degree of variance in the taxonomic composition of the prokaryotic communities
is explored in more detail below. Notably, the viral communities were also highly variable
in composition across this sample set with these patterns explored in more detail below.

A relatively small fraction of the prokaryotes identified in these wastewater samples appear
to be derived from the human microbiome. This is qualitatively evident by examining the
abundances of the bacterial families commonly found in human feces (Bacteroidaceae,
Ruminococcaceae, Lachnospiraceae, Porphyromonadaceae, Rikenellaceae, and Prevotellaceae
[9]), which collectively account for only 13% of the bacterial and archaeal rRNA gene reads
recovered from all sewage samples. To investigate these patterns in more detail, we used the
indicator taxon approach described by Barberán et al. (29), which identified particular taxa
that are consistently found in human feces and either absent, or present in low abundances,
in other sample types, including soil and aquatic environments. The summed abundances of
these human microbiome “indicator” taxa represent a relatively small percentage of all 16S
rRNA gene reads recovered from the wastewater metagenomes (mean, 8.6% of total reads;
range, 0.2 to 35% reads per sample). Thus, whereas bacteria derived from human feces are
present in the sewage microbiome, the human microbiome is a reasonably small contributor
to the wastewater microbiome, confirming results reported previously (9, 12, 13, 30).
Together, these results suggest that a large fraction of the bacteria found in the wastewater
samples are more permanent residents of the sewage system and likely derived from biofilms,
sediments, or other locations within the sewer system itself. The wastewater microbiome is a
unique microbial habitat that harbors distinct microbial communities; it is not exclusively a sys-
tem transporting transient microbes added into the system from human feces.

We calculated Bray-Curtis dissimilarities in overall functional gene profiles across the
sample set from the SqueezeMeta output (31), using normalized gene abundances across
168 unique pathways, and found that overall functional gene composition was well-corre-
lated with the corresponding Bray-Curtis dissimilarities in taxonomic composition (Mantel
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r = 0.82, P , 0.001). Differences in taxonomic composition were closely associated with
overall differences in functional gene composition. For this reason, we assume that the
observed spatiotemporal patterns in taxonomic composition (described below), mirror
observed differences in community-level functional gene composition. However, this is not
necessarily true for individual genes or gene categories which could exhibit unique distri-
bution patterns. While there are many individual genes or gene categories worthy of
detailed exploration, we focused on one category of genes that are particularly relevant to
public health, antibiotic resistance genes, with the spatiotemporal patterns in antibiotic re-
sistance gene profiles described below.

Spatial patterns in the taxonomic composition of the prokaryotic communities.
The 188 sewage samples included in this study were collected from 17 different locations
in the same sewage network across an;1 km2 area (Fig. 1A). Sampling location was a sig-
nificant predictor of differences in sewage prokaryotic community composition (permuta-
tional analysis of variance [PERMANOVA] R2 = 0.38, P , 0.001). In particular, we noted 5
general clusters of community types (Fig. 1B) and the taxa driving differences across the 5
clusters are detailed in Fig. S1 in the supplemental material. These location-specific differ-
ences in taxonomic composition do not appear to be strongly related to sewer material,
sewer depth, or the resident human population served by each sewer since PERMANOVA
R2 values were ,0.04 for all of these variables. Rather, the spatial variation was most
strongly associated with differences in sample pH (Mantel r = 0.23, P , 0.001) with total
suspended solids (TSS) concentrations and sample volume of lesser importance (Mantel
r = 0.13 and 0.11, respectively, P = 0.004 for both variables). The importance of sample pH
in structuring the sewage microbial communities is similar to other aquatic and terrestrial
environments, where pH has also been demonstrated to be closely associated with shifts
in bacterial community composition (32–34). There are clearly other location-specific varia-
bles, including unmeasured variables like temperature (13) or specific organic carbon or
nutrient concentrations, that could be contributing to the observed spatial patterns.
However, it is important to note that the sewage communities found at individual loca-
tions are far from static and exhibit pronounced temporal variation, as discussed in more
detail below.

We next identified which particular taxa were differentially abundant across the loca-
tion-specific clusters of community types (Fig. 1B). To do so, we used an indicator taxon
approach, focusing on the more abundant taxa that were over-represented in clusters 2
to 5 compared to cluster 1 (which included 11 of 17 sampling locations). These results
are presented in Fig. S1. Of note, we observed that samples from the location assigned
to cluster 2 had higher relative abundances of Pseudomonadaceae than samples from
other locations and samples from the three locations assigned to cluster 3 had higher rel-
ative abundances of Arcobacteraceae and Selenemonadaceae. Likewise, samples from the
cluster 4 location had higher abundances of Weeksellaceae with samples from the cluster
5 location having higher abundances of Lachnospiraceae and Bacteroidaceae than other
locations. Interpreting these observed patterns is difficult since these are relatively broad
taxonomic groups with diverse physiologies. However, these patterns do suggest that
there are location-specific signatures in the sewage bacterial communities, signatures
that are most likely a product of the unique biogeochemical conditions found at these
sampling locations.

Temporal patterns in the taxonomic composition of the prokaryotic commun-
ities. The communities found in sewage samples collected from a given location were
highly variable in taxonomic composition over the 3-week sampling period. This is evi-
dent from Fig. 2, left which highlights that the average Bray-Curtis dissimilarity in taxo-
nomic composition within a given sampling location over time (mean = 0.39) was not
appreciably lower than the average Bray-Curtis dissimilarity in taxonomic composition
between sampling locations (mean = 0.47). In other words, despite observing signifi-
cant differences in community composition across sampling locations (as detailed
above), the variation observed within a given location over time was similar in magni-
tude to the differences between sites, with some sampling locations (e.g., sites R and
O) exhibiting higher variance in taxonomic community composition than others (e.g.,
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sites F and C) (Fig. 2, right). Perhaps more importantly, the temporal patterns observed
in the taxonomic composition of the wastewater communities were not consistent
across sites. Sampling dates when we observed pronounced changes in the composi-
tion of the wastewater communities (compared to the average composition at a given
location) were rarely shared across sites (see Fig. S2). We next sought to determine
which variables (days since first collection, daily high/low temperatures, the volume of
sewage collected, sewage pH, daily precipitation amounts, or total suspended solid
concentrations) best explained the temporal variation observed at individual sampling
locations. Using Mantel tests, “days since” was significant at 9 of the 15 locations and
TSS was significant at 6 of the 15 locations (R . 0.25 and P , 0.05) (see Table S1). No
other variable was significant at more than two individual sites. Thus, Mantel tests indi-
cate that “days since” and TSS are the factors most strongly correlated with temporal
variation in community composition. These results are consistent with the results from
the MRM models which were variable in their overall explanatory power (R2 values
from 0.09 to 0.74) with the four most significant scores (R2 $ 0.25, P , 0.01) each indi-
cating one or both of “days since” and TSS in the top two variables (see Table S1).
Although temperature has been noted previously as being important in structuring
wastewater communities (13), changes in daily high and low temperatures were not
strongly associated with observed changes in community composition across any of
the sites. We note, however, that surface air temperature may not reflect the tempera-
ture of the wastewater at these upstream locations.

The associations between temporal changes in community composition and both
days from the start of the study and total suspended solid concentrations are most
likely driven by differences in usage patterns, most notably temporal changes in
human fecal inputs into the sewage system. This is evident from an increase in the rela-
tive abundance of human fecal indicator bacteria in week 2 compared to weeks 1 and
3, a pattern that was consistent across most sites (see Fig. S3). We hypothesize that this
week 2 increase in human fecal indicator bacteria is a product of the large early-season

FIG 2 Temporal variation in overall community composition within individual sampling locations. We summarized
pairwise Bray-Curtis distances in the taxonomic composition of the prokaryotic communities within sites (temporal
variation) versus between sites (spatial variation). Also shown are the pairwise Bray-Curtis distances in community
composition across sampling dates within each individual sampling location. Note that some of the sampling
locations (e.g., sites O and R) show higher temporal variance in taxonomic community composition than others (e.g.,
sites C and F).
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snow event that occurred 8 and 9 September 2020, which may have increased the ratio
of blackwater to graywater by altering residential bathing habits through a notable
temperature decrease from 33 to 0°C within 18 h. Together, these results highlight that
there is pronounced temporal variation observed at individual sampling locations, and
this variation is most likely associated with changes in fecal inputs to the system
(although fecal bacteria represent a relatively small proportion of taxa in these com-
munities [see discussion above]), reflecting the variation noted in other studies on
short temporal timescales (12). We acknowledge that most of the observed temporal
variation at the individual sampling locations remains statistically unexplained, high-
lighting the importance of collecting additional information on wastewater systems
and their usage. There are likely other unmeasured factors, including sewer tempera-
tures, sewage inputs, or specific usage patterns, that could be used to predict when
and how wastewater communities will change over time (13). More generally, these
results emphasize the importance of considering temporal variation when assessing
spatial differences in wastewater communities, even in a given sewer network. A single
time point sampling will give a limited, and perhaps even misleading, perspective on
the composition of wastewater prokaryotic communities.

An additional factor that may have contributed to the observed temporal variability
is the fact the communities may not have reached a steady-state for this university
sewer network. Samples were collected within 1 to 2 weeks after students returned to
on-campus residences, following a nearly stagnant and unused sewer system from
March to August 2020. This flushing of stagnant water over time may explain why
“days since the start of sampling” was often a factor associated with the observed tem-
poral variation in bacterial community composition (see Table S1), a result consistent
with our hypothesis that flushing of stagnant water, lack of residual disinfectant, and
idle plumbing can contribute to changes in wastewater microbiome composition (35).
More specifically, we expected that flushing of stagnant water could be associated
with increases in the abundances of premise-plumbing associated pathogens such as
Legionella pneumophila and Acinetobacter baumannii (36–38). For the first 5 days of the
sampling period, when stagnant water was likely being flushed through the system,
we found that there was an initial spike followed by a consistent decrease in the rela-
tive abundances of Legionella at 10 of the 15 sampling locations and of Acinetobacter
at 7 of 15 sample locations (see Fig. S4). However, additional work is needed to investi-
gate these dynamics in more detail and to determine the public health relevance of
these or other potential pathogens accumulating in plumbing or sewer systems upon
prolonged stagnation.

Spatiotemporal patterns in the abundances of antibiotic resistance genes. Given
the public health importance of documenting antibiotic resistance genes (ARGs) in
wastewater and other built environments (8, 39, 40), we focused our functional gene
analyses of the metagenomic data on those genes presumed to be associated with an-
tibiotic resistance. However, we note that we are likely missing other potentially impor-
tant ARGs and not all genes annotated as ARGs necessarily confer antibiotic resistance
(41). The number of metagenomic sequences classified as ARGs was low, with ARGs
representing an average of 0.003% of reads per sample (range, 0.0003 to 0.010%)
(Fig. 3A). This low fraction of ARGs detected is similar to what has been observed in
comparable metagenomic data sets (16, 42, 43). Even with these low abundances, we
detected a broad diversity of ARGs across the sample set, including ARGs associated
with resistance to 27 different drug classes, but the proportional abundances of ARG
types were reasonably consistent across the locations sampled (Fig. 3B). The most
abundant ARGs detected are those associated with resistance to tetracycline, macro-
lide, and beta-lactam drug classes (Fig. 3B). These dominant classes of ARGs were also
recovered in metagenomic analyses of similar sample types (16), but we note that this
may be, in part, a product of the reference database being biased toward ARGs that
are well characterized.

We did observe pronounced variation in the relative abundance of ARG genes
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across sampling locations and over time within individual locations (Fig. 3A). Given
that ARGs are often considered to be particularly abundant in human fecal material-
derived bacteria, we hypothesized that those samples with higher abundances of fecal
bacteria would have higher relative abundances of ARGs. This was not the case, as the

FIG 3 (A) Variation in the proportion of reads assigned to antibiotic resistance genes (ARGs) normalized to total read
count at each sampling location. We observed a significant effect of sampling location on ARG abundances (one-way
ANOVA, F value = 8.06, P , 0.001). (B) Proportional abundances of ARGs assigned to different drug classes, highlighting
the consistency in general ARG types across locations.
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correlation between ARGs and fecal indicator abundances across the whole sample set
was relatively weak (linear regression, R2 = 0.14, P , 0.001). While ARGs are clearly
present in wastewater samples, these ARGs are not necessarily indicative of fecal con-
tamination, and the ARGs are often likely to be associated with other bacteria residing
in the sewer system. Not all ARGs are necessarily derived from anthropogenic inputs
and presumably ARGs would be present in this system even in the absence of appreci-
able fecal inputs (as evidenced from the abundance of ARGs detected at the “Admin”
site which served a building with few if any occupants during the sampling period).
More work is needed to identify which bacteria in sewage systems harbor particular
ARGs, where these bacteria reside within sewer systems, and the public health rele-
vance of these sewer-associated ARGs.

Spatiotemporal patterns in viral communities. In addition to investigating the com-
position of the prokaryotic communities and how they vary across sampling locations or
within individual locations over the 3-week period, we also characterized the corresponding
spatiotemporal variation in the viral communities. This study was motivated by the likely im-
portance of bacteriophage to the structure of sewage and other microbiomes (15, 44).
Moreover, with the growing interest in documenting viral community dynamics in built
environments (45), it is important to assess how spatiotemporal variation in viral community
structure compares to the corresponding variation in prokaryotic communities which are far
more commonly studied. Viral communities were characterized using FastVirome Explorer
with the IMG/VR and NCBI RefSeq databases (see Materials and Methods). We start by not-
ing three important caveats associated with the viral analyses. First, as our analyses were re-
stricted to double-stranded DNA (dsDNA), we did not capture RNA or single-stranded DNA
(ssDNA) viruses. Second, we are likely identifying only the more abundant viruses in these
samples since a deeper sequencing depth would be required to identify relatively rare viral
taxa in these samples. Third, since we used a reference viral genome database for classifying
viral reads, our analyses are restricted only to viruses included in the reference database,
and we would not capture novel viral diversity, which is likely high in these types of environ-
ments (46). Despite these caveats, we were able to document pronounced spatiotemporal
variation in the viral communities.

The dominant viral taxa identified when using the IMG/VR database were within
the order Caudovirales (tailed dsDNA bacteriophages), representing 99.40% of the vi-
ral reads that could be classified. While 68.63% of Caudovirales reads were not
resolved to family level, three families within this order—Myoviridae, Podoviridae, and
Siphoviridae—represented 12.00, 10.86, and 7.49% of total viral reads, respectively.
These viral taxa have also been found to be dominant in another metagenomic-
based sewage survey (15). Using results from analyses conducted with the NCBI
RefSeq database, we recovered sequences assigned to the crAssphage (cross-assem-
bly phage) group (69% of viral reads on average; see Fig. S5A), which is notable given
that this viral group is often considered an indicator of fecal contamination (47).
Importantly, we observed variation in the proportional abundances of the dominant
viral taxa recovered across the sampling locations as annotated with both the NCBI
RefSeq database (see Fig. S5A) and the IMG/VR database (see Fig. S5B).

The observed variation in the composition of the viral communities was reasonably well-
correlated with the variation in prokaryotic community composition. This was evident when
we compared viral to prokaryotic community composition across all samples (Mantel
r = 0.67, P = 0.001) and within individual locations over time (Mantel r = 0.42 to 0.87,
P, 0.001 in all cases). This correspondence between viral and prokaryotic community com-
position is not surprising given the host specificity of many bacteriophage (48, 49) with simi-
larly close associations between sewage phage and prokaryotic community composition
having been observed previously (15). Moreover, the close correspondence between viral
and prokaryotic community composition indicates that the spatiotemporal patterns in pro-
karyotic communities (as described above) apply to both components of the sewage micro-
biome with viral communities also exhibiting pronounced variation in composition across
sampling locations and over time within individual locations.
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To investigate the associations between viral and prokaryotic communities in more
detail, we used network analyses based on cooccurrence patterns to identify viruses
(including those with both known and undetermined bacterial hosts) that consistently
cooccur with particular prokaryotic taxa. Although cooccurrence patterns provide only
putative associations between particular viruses and their potential bacterial hosts,
we were able to accurately reconstruct known phage-host relationships (Fig. 4). For
example, we identified a number of phage taxa known to infect bacteria within the
Enterobacteriaceae and Bacteroidaceae families (Fig. 4) that also cooccurred with these
bacterial families across the sample set. However, there were a few viruses that cooc-
curred with multiple distinct bacterial taxa, a result we might expect given that some
phage can infect a broad range of bacterial hosts (48, 49). Likewise, some of the viruses
with undetermined host specificity cooccurred with specific bacterial taxa (Fig. 4), high-
lighting that these cooccurrence analyses can be used to generate hypotheses about
the likely host preferences of poorly characterized viral taxa.

Conclusions. By conducting shotgun metagenomic analyses on 188 wastewater samples
collected over a 3-week period from 17 locations within a single sewage network on a univer-
sity campus, we were able to document the spatial and temporal patterns in prokaryotic and
viral communities at reasonably high spatiotemporal resolution. As overall differences in func-
tional gene profiles closely mirrored differences in the taxonomic composition of the prokary-
otic communities (see “General Description of the Prokaryotic Communities” above), we
focused our functional gene analyses on genes putatively coding for antibiotic resistance func-
tions given their potential importance. Together, the results from these analyses lead us to
several broader conclusions. First, sewage microbial communities are not dominated by taxa
derived from human fecal inputs. Rather, many of the taxa found in sewage are likely derived
from sewer biofilms or accumulated sediments within the sewer system, highlighting the im-
portance of understanding how these resident microbial communities develop over time and
across different locations within an individual sewer system. Second, we observed pro-
nounced spatial variation, even across locations within the same network in close proximity,

FIG 4 Bipartite cooccurrence network of top viral and bacterial taxa detected across all sewage
samples (only viral and bacterial taxa correlated with a Pearson r value . 0.75 are included here).
Square nodes are bacterial taxa colored by bacterial family. Circular nodes are viral (phage) nodes
colored by putative bacterial host as assigned in the IMG database, illustrating the accuracy of phage
host assignments.
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but the spatial variation was often similar in magnitude to the temporal variation observed at
a given sampling location, a pattern that was observed for prokaryotic and viral community
composition as well as ARG profiles. Just as importantly, the temporal patterns in the sewage
communities were often inconsistent across sampling locations with different patterns (and
different abiotic variables associated with those patterns) across the sampling locations. This
high degree of temporal variation, variation that is often difficult to predict a priori, is relevant
to future work since it highlights the importance of collecting additional information to char-
acterize the sewage environment across space and time, including specific usage patterns in
buildings served by a given sewer system (e.g., frequency of toilet or appliance usage), sewage
nutrient or xenobiotic concentrations, temperature, and other variables that were not directly
measured for this study. Presumably, additional information describing conditions in the sew-
age system, or the buildings feeding the sewage system, would provide more insight into the
specific factors associated with the observed variation in sewage microbial communities.
More generally, these results highlight that collecting sewage samples from a single time
point, or just a few time points, may not adequately capture microbial dynamics at a given
location, and studies that do not explicitly characterize potential temporal variation when
assessing spatial variation may yield an incomplete perspective on the sewage microbiome.

MATERIALS ANDMETHODS
Sample collection. Wastewater samples were collected from 17 locations across the University of

Colorado campus in Boulder, CO (40.00°N, 105.26°W). All locations are within the same sewer network
with 14 of the 17 sampling locations representing sewage outflow from individual buildings with the
remaining locations representing flow from multiple buildings, meaning they were either downstream
of several buildings in the sewer network, or regularly received backflow from several buildings (Fig. 1A).
Sampling was conducted from surface-accessible manholes with wastewater collected at each location
using composite autosamplers (50). Sampling locations are labeled followed the naming convention
used previously (50). All samples included in this study were collected over a 3-week period (1 to 20
September 2020) and up to four samples were collected per week (Tuesday, Thursday, Saturday, and
Sunday) for a total of 6 to 12 sampling dates per location (13 of the 17 locations had at least 11 sampling
time points). Each sample represented a 24-h flow-proportional composite sample (50). In total, we col-
lected 188 sewage samples, with each sample representing an integrated, continuous collection over a
24-h period withdrawn using peristaltic pumps. The total volume of sewage collected from each location
on each sampling date (mean, 8 L; range, 0.3 to 16.2 L) represented a proxy for the total volume of sew-
age moving through each location over each 24-h period, withdrawing lower volumes when the sewer
pipe was dry or sampling inlet mispositioned. All samples were stored on ice during the 24 h withdrawal
and immediately upon collection. After transportation to the laboratory, 2-mL aliquots were withdrawn
and centrifuged at 14,000 � g for 10 min at 4°C, and the decanted pellets with were frozen at 280°C
within 4 h of collection for subsequent DNA analyses.

In addition to the shotgun metagenomic analyses described below, we also measured the pH of
each sample (mean pH, 8.4; range, 7.0 to 9.6) and the amount of total suspended solids (mean, 80 mg
L21; range, 10 to 300 mg L21) using standard methods (50). Additional data collected for each sampling
location included: sewer material (brick versus concrete), sewer depth (the depth below the ground sur-
face from which samples were collected [mean, 3.0 m; range, 1.5 to 5.5 m]), and the estimated popula-
tion of full-time residents served by that particular sewer line (mean, 544 individuals; range, 0 to 2,536
individuals; with only one location, a classroom/office building, having no full-time residents). For the
temporal analyses, we also included information on daily high/low air temperatures and precipitation
amounts with these data compiled from the National Oceanic and Atmospheric Administration Physical
Sciences Laboratory.

Shotgun metagenomic sequencing. DNA was extracted from homogenized 2-mL aliquots of each
of the 188 samples with two DNA extraction “blanks” and two no-template control samples processed
alongside the samples to check for potential contamination. DNA was extracted using a DNeasy
PowerSoil HTP 96 kit (Qiagen, Germantown, MD) according to the manufacturer’s instructions, and libra-
ries for shotgun metagenomic sequencing were prepared using Illumina DNA Prep kits and IDT for
Illumina DNA Unique Dual Index Sets (Illumina, San Diego, CA). Briefly, DNA was fragmented and
adapter tag sequences were added using bead-linked transposomes, followed by a PCR step to add
adapter sequences. The resulting libraries were then cleaned by bead purification, quantified, and
pooled in equimolar concentrations. Pooled libraries (which included 188 sewage samples and the 4
“blank” samples) were sequenced on duplicate Illumina NovaSeq lanes running the 2 � 150-bp paired-
end sequencing chemistry. This sequencing effort yielded 3.4 to 24 million paired-end reads per sewage
sample (mean, 10 million) with the four “blank” samples yielding 0 to 1,700 reads, indicating nonexistent
to minimal contamination.

Bioinformatics. Read quality was assessed using FastQC (51) and adapters were removed using
Cutadapt version 2.4 (52). We used Sickle (53) to trim bases of insufficient quality (q-score .20) and
reads of insufficient length (,50 bp). After these quality control and filtering steps, a total of 983 million
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paired-end reads remained across all 188 sewage samples, with a mean of 5.23 million reads per sample
(range, 1.66 to 10.64 million).

To assess the taxonomic composition of the communities, we used phyloFlash (28), a tool that extracts
small-subunit rRNA gene reads from the shotgun metagenomic data, with taxonomic classification of the
reads determined by comparing extracted reads against those in the SILVA reference database, version 138.1
(54). As nearly all of these reads were prokaryotic (bacterial and archaeal), with eukaryotic reads representing
only 0.26% of all rRNA gene reads across the data set, we removed reads from the resulting taxon table that
were classified as chloroplasts, mitochondria, or eukaryotes (this process removed only 18,475 of the
2,156,483 rRNA gene reads across the entire data set). We also removed those taxa from the table that were
represented by fewer than 10 reads across the entire data set to be conservative in our assessment of pro-
karyotic diversity (removing an additional 4,469 reads in total). The resulting taxon table yielded a mean of
11,370 prokaryotic rRNA gene reads per sample (range, 1,702 to 22,056). To provide a broad assessment of
how functional gene profiles may relate to the taxonomic composition of the communities, we annotated
functional gene reads with the SqueezeMeta pipeline’s “read-only” analysis script, sqm_reads.pl (31), to
obtain KEGG annotations of genes. To determine the presence of unique genes, we then used the KEGG on-
tology (KO) with gene abundances normalized against the abundances of single-copy genes with MUSiCC
(55). We identified.17,000 unique genes (KOs) across the entire data set. These KOs collectively represented
168 unique gene pathways with Bray-Curtis dissimilarities calculated from the assigned normalized abundan-
ces of genes per sample.

We quantified the classes and relative abundances of antibiotic resistance genes in each sample by proc-
essing trimmed and filtered metagenomic reads through the Resistance Gene Identifier pipeline (56) using
default parameters for shotgun metagenomic data and the Comprehensive Antibiotic Resistance Database
(CARD; version 3.0.1) as the reference database. After assigning ARGs, we removed “rare” genes (those that
occurred in,10 of the 188 samples) and those deemed to be of insufficient quality (,40 MAPQ score).

For the viral community analyses, we used FastViromeExplorer (57) with quality-filtered reads against the
IMG/VR database (58) and, separately, the NCBI RefSeq database to detect and identify viruses (dsDNA
phages) present in the sewage metagenome samples. We used these two different databases to characterize
as many viral reads as possible due to database differences in annotation and taxonomic resolution.
Specifically, 1,921,070 of our reads matched against the NCBI database, while 8,961,471 of our reads matched
against the IMG/VR database. However, the taxonomic resolution and species identification varied between
the databases. For all analyses, with the exception of the calculations of crAssphage abundances, we used
the IMG/VR annotation due to the larger amount of reads characterized. As the number of recovered viral
reads per sample was correlated with overall per-sample sequencing depth (r2 = 0.72, P, 0.001), we rarefied
to 2206 viral reads per sample and removed viral taxa represented by ,10 reads across the entire data set
prior to downstream analyses. As explained in more detail above (see Results and Discussion), we note that
this pipeline would be expected to underestimate the total amount of viral diversity that could be found in
these samples. A bipartite cooccurrence network of the more abundant viral and bacterial taxa was con-
structed in R using the iGraph package (“graph_from_incidence_matrix”) (59). Input for the bipartite network
was a correlation table of viral-bacterial abundances across samples (filtered to include only correlations with
Pearson r values. 0.75).

Data visualization and statistical analyses. All downstream analyses were conducted in R (60), unless
otherwise noted. For the spatial analyses, we calculated average pairwise Bray-Curtis dissimilarity levels across
the 17 sampling locations, with differences across sample categories determined using PERMANOVA as
implemented in the R package vegan 2.5.7 (61). Location-specific differences in community composition
were visualized via hierarchical clustering (Ward method, R package Stats 4.0.5). To determine what measured
sewage variables (including sampling date, weekend versus weekday, location, pH, sewer depth, total sus-
pended solids, sewer age, sewer material, resident population, sample volume, geographic location, and total
read counts) were associated with the observed variation in the taxonomic composition of bacterial com-
munities, we used Mantel tests (R package vegan 2.5.7) with Euclidean distances in the measured continuous
variables and Bray-Curtis distances in the taxonomic composition of the microbial communities. Analysis of
volatility in taxonomic composition was performed in Python 3.6.9, with Bray-Curtis distances calculated via
the package scikit-bio version 0.5.6. Analyses of the temporal variation in community composition were re-
stricted to samples from 15 of the 17 sites as these 15 sites had samples from at least 10 of the 12 total sam-
pling times over the 3-week period (2 sites—“K” and “Admin”—were represented by only 9 and 6 samples,
respectively). We used both Mantel tests (R package vegan v2.5.7) and multiple regression on distance matri-
ces (MRM, R package ecodist v2.0.7) to identify the specific variables that explain the observed temporal vari-
ation in bacterial community composition within sites.

Data availability. Raw sequence reads for all samples and the associated sample metadata have
been uploaded to the NCBI Sequence Read Archive repository under accession number PRJNA875025.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.7 MB.
FIG S2, PDF file, 0.03 MB.
FIG S3, PDF file, 0.1 MB.
FIG S4, PDF file, 0.03 MB.
FIG S5, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.04 MB.
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